2 Fundamentos de Sistemas Lineares e Representação Modal

2.1 Introdução

Neste capítulo é apresentada a teoria básica de sistemas lineares invariantes no tempo e as equações matemáticas que descrevem tais sistemas. É usada a definição de estado para representar a dinâmica de sistemas mecânicos no modelo em espaço de estados, o qual é o modelo dinâmico base usado pelos algoritmos de subespaço para identificação de parâmetros modais de sistemas MIMO no domínio do tempo. São definidos os parâmetros modais e parâmetros de Markov e sua relação com a dinâmica do sistema, especialmente com o modelo discreto em espaço de estados. Por último os conceitos de controlabilidade e observabilidade são utilizados para definir uma realização mínima em espaço de estados.

2.2 Relação entrada-saída de sistemas lineares

A relação entrada-saída representa a relação matemática entre a entrada $\boldsymbol{u} = \begin{bmatrix} u_1 & u_2 \dots u_r \end{bmatrix}$ e a saída $\boldsymbol{y} = \begin{bmatrix} y_1 & y_2 \dots y_m \end{bmatrix}$ de um sistema, como se mostra na Fig.(2.1).

Figura 2.1: Sistema com r entradas e m saídas

Neste trabalho, o sistema não é considerado uma caixa preta, o que quer dizer que a estrutura interna (modelo) do sistema não é suposta completamente desconhecido, porém o principal acesso ao sistema é pelos sinais de entrada e saída. Para facilitar a análise da resposta de um sistema linear devido a uma entrada ou excitação arbitrária é necessário representar a resposta como combinação de funções mais "simples". Consideremos um sistema linear excitado por uma função delta de Dirac, ou impulso unitário, como entrada aplicada num instante τ , $\delta(t - \tau)$, e representemos a resposta no instante tpor $\mathbf{g}(t, \tau)$.

Assim, a resposta y(t), no instante t, para uma entrada arbitrária u(.), definido no intervalo de tempo $(-\infty, \infty)$, de um sistema que satisfaz a propriedade de linearidade [24], [12], pode ser representada pela equação

$$\boldsymbol{y}(t) = \int_{-\infty}^{\infty} \boldsymbol{g}(t,\tau) \boldsymbol{u}(\tau) d\tau.$$
(2-1)

Se as entrada e saída possuem a propriedade de causalidade, a eq.(2-1) pode ser reduzida para

$$\boldsymbol{y}(t) = \int_{-\infty}^{t} \boldsymbol{g}(t,\tau) \boldsymbol{u}(\tau) d\tau, \qquad (2-2)$$

além disso, se o sistema esta relaxado no tempo t_0 , ou seja por definição, que a saída $\boldsymbol{y}_{[t_0,\infty)}$ é só e unicamente excitado pela entrada $\boldsymbol{u}_{[t_0,\infty)}$, a eq.(2-2) pode ser reduzida para

$$\boldsymbol{y}(t) = \int_{t_0}^t \boldsymbol{g}(t,\tau) \boldsymbol{u}(\tau) d\tau.$$
(2-3)

Se as características do sistema não mudam com o tempo, se diz que o sistema é invariante no tempo, fixo ou estacionário. Então, a função $\mathbf{g}(t,\tau)$ depende só da diferença entre $t \in \tau$, $\mathbf{g}(t,\tau) = \mathbf{g}(t-\tau,0) = \mathbf{g}(t-\tau) \forall \{t,\tau\}$, e a eq.(2-3) pode ser reduzida para a equação

$$\boldsymbol{y}(t) = \int_0^t \boldsymbol{g}(t-\tau)\boldsymbol{u}(\tau)d\tau = \int_0^t \boldsymbol{g}(\tau)\boldsymbol{u}(t-\tau)d\tau \qquad (2-4)$$

a qual representa a relação entrada-saída de um sistema linear, causal, invariante no tempo, relaxado no tempo $t_0 = 0$.

2.2.1 Função de transferência

Usando a transformada de Laplace, é possível transformar a relação entrada-saída no domínio do tempo em uma equação algébrica no domínio da freqüência [24], [12],

$$\mathbf{Y}(s) \triangleq \mathscr{L}[\mathbf{y}(t)] \triangleq \int_0^\infty \mathbf{y}(t) e^{-st} dt,$$
$$\mathbf{Y}(s) \triangleq \mathbf{G}(s) \mathbf{U}(s)$$
(2-5)

sendo, $\mathbf{G}(s) = \int_0^\infty \mathbf{g}(t) e^{-st} dt$, a transformada de Laplace da função de resposta ao impulso unitário, conhecida como a matriz função de transferência (FT) do sistema.

2.3 Representação de sistemas mecânicos em espaço de estados

As equações de movimento para um sistema mecânico linear elástico com amortecimento viscoso, invariante no tempo, com q graus de liberdade (g.d.l) pode ser expressado na forma matricial como

$$\mathbf{M}\ddot{\boldsymbol{w}}(t) + \mathbf{E}\dot{\boldsymbol{w}}(t) + \mathbf{K}\boldsymbol{w}(t) = \boldsymbol{f}(t) = \mathbf{B}_{o}\boldsymbol{u}(t)$$
(2-6)

sendo t o tempo contínuo, $\mathbf{w}(t) \in \mathbb{R}^{q \times 1}$ o vetor deslocamento, e os pontos superpostos indicam derivada com respeito ao tempo; $\mathbf{f}(t)$ é a força, sendo $\mathbf{u}(t) \in \mathbb{R}^{r \times 1}$ o vetor excitação e $\mathbf{B}_o \in \mathbb{R}^{q \times r}$ é a matriz de distribuição de atuadores e descreve a influência do vetor força de excitação nos pontos de medição das entradas; $\mathbf{M} \in \mathbb{R}^{q \times q}$ é a matriz positivadefinida de massa do sistema, $\mathbf{E} \in \mathbb{R}^{q \times q}$ é a matriz positiva semi-definida de amortecimento e $\mathbf{K} \in \mathbb{R}^{q \times q}$ é a matriz positiva semi-definida de rigidez. Na identificação experimental das características dinâmicas de estruturas, só podem ser observados alguns graus de liberdade, então, existe um sistema de medição com m sensores adequadamente distribuídos para a medição das respostas dinâmicas da estrutura. Se sensores de deslocamento, velocidade e aceleração são usados simultaneamente para medir as respostas dinâmicas em diferentes pontos da estrutura, então a equação das medições combinadas nas saídas do sistema estrutural pode ser escrito como

$$\mathbf{y}(t) = \mathbf{C}_d \mathbf{w}(t) + \mathbf{C}_v \dot{\mathbf{w}}(t) + \mathbf{C}_a \ddot{\mathbf{w}}(t)$$
(2-7)

sendo, \mathbf{C}_d , \mathbf{C}_v , $\mathbf{C}_a \in \mathbb{R}^{m \times q}$ as matrices que descrevem a influência dos vetores de deslocamento, velocidade e aceleração, respectivamente, nos pontos de medição das saídas.

Definindo o vetor de estado na forma $\mathbf{x}(t) = {\mathbf{w}(t); \dot{\mathbf{w}}(t)} \in \mathbb{R}^{n \times 1}$, com n = 2q, as equações de movimento de segunda ordem do modelo físico definido na equação (2-6) pode ser transformado na seguinte equação de estado de primeira ordem

$$\dot{\boldsymbol{x}}(t) = \mathbf{A}_c \boldsymbol{x}(t) + \mathbf{B}_c \boldsymbol{u}(t)$$
(2-8)

sendo, $\mathbf{A}_c \in \mathbb{R}^{n \times n}$ a matriz do sistema e
, $\mathbf{B}_c \in \mathbb{R}^{n \times r}$ a matriz de entradas, definidas como

$$\mathbf{A}_{c} = \begin{bmatrix} 0 & \mathbf{I} \\ -\mathbf{M}^{-1}\mathbf{K} & -\mathbf{M}^{-1}\mathbf{E} \end{bmatrix} , \qquad \mathbf{B}_{c} = \begin{bmatrix} 0 \\ \mathbf{M}^{-1}\mathbf{B}_{o} \end{bmatrix}.$$
(2-9)

Usando a mesma definição do vetor de estado, a equação de medição (2-7) pode ser transformada em

$$\boldsymbol{y}(t) = \mathbf{C}\boldsymbol{x}(t) + \mathbf{D}\boldsymbol{u}(t) \tag{2-10}$$

sendo, $\mathbf{C} \in \mathbb{R}^{m \times n}$ a matriz de influência na saída do vetor de estado $\mathbf{x}(t)$ e $\mathbf{D} \in \mathbb{R}^{m \times r}$ a matriz de transmissão direta, definidas como

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_d - \mathbf{C}_a \mathbf{M}^{-1} \mathbf{K} & \mathbf{C}_v - \mathbf{C}_a \mathbf{M}^{-1} \mathbf{E} \end{bmatrix} , \quad \mathbf{D} = \mathbf{C}_a \mathbf{M}^{-1} \mathbf{B}_o.$$
(2-11)

A matriz \mathbf{D} pode desaparecer da equação (2-10) quando não são usados acelerometros para as medições nas saídas.

Assim, as equações (2-8) e (2-10) constituem o modelo em espaço de estados no tempo contínuo para um sistema mecânico linear, invariante no tempo, com múltiplas entradas e múltiplas saídas (MIMO, na sigla em inglês). Por conveniência, costuma-se usar o conjunto de matrizes $(\mathbf{A}_c, \mathbf{B}_c, \mathbf{C}, \mathbf{D})$ para referir-se ao modelo em espaço de estados em tempo contínuo.

2.3.1 Função de transferência

Tomando a transformada de Laplace das equações (2-8, 2-10) e supondo $\boldsymbol{x}(0) = \boldsymbol{x}_0$, obtemos

$$s\mathbf{X}(s) - \mathbf{x}_0 = \mathbf{A}_c \mathbf{X}(s) + \mathbf{B}_c \mathbf{U}(s)$$
(2-12)

$$\mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s) ; \qquad (2-13)$$

se as condições iniciais são zero, $\mathbf{x}_0 = \mathbf{0}$, as equações (2-12, 2-13) podem ser reduzidas, obtendo a relação entrada-saída seguinte

$$\mathbf{Y}(s) = \left[\mathbf{C}(s\mathbf{I} - \mathbf{A}_c)^{-1}\mathbf{B}_c + \mathbf{D}\right]\mathbf{U}(s).$$
(2-14)

Comparando esta equação com (2-5) obtém-se a F.T. do sistema mecânico linear invariante no tempo e sua representação dinâmica em espaço de estados (\mathbf{A}_c , \mathbf{B}_c , \mathbf{C} , \mathbf{D}), dada por

$$\mathbf{G}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A}_c)^{-1}\mathbf{B}_c + \mathbf{D}.$$
 (2-15)

2.4 Modelo em espaço de estados equivalente no tempo discreto

Na análise modal experimental [18], os sinais precisam ser convertidos de analógico em digital para o processamento em equipamentos como analisadores e computadores digitais; assim, as entradas ou excitações são geradas usando séries de sinais discretas e a aquisição de dados é feito em instantes de tempo discretos; em conseqüência um modelo da dinâmica do sistema no tempo discreto é necessário.

O modelo em espaço de estados no tempo discreto para um sistema estrutural MIMO, análogo ao modelo no tempo contínuo, com tempo de amostragem Δt é definido por

$$\mathbf{x}(k+1) = \mathbf{A}\mathbf{x}(k) + \mathbf{B}\mathbf{u}(k); \quad \mathbf{x}(0) = \mathbf{x}_0 \tag{2-16}$$

$$\mathbf{y}(k) = \mathbf{C}\mathbf{x}(k) + \mathbf{D}\mathbf{u}(k) \quad k = 0, 1, 2, \dots$$
 (2-17)

sendo o inteiro k o índice do tempo discreto no instante de tempo $t = k\Delta t$, $\mathbf{x}(k)$ é o vetor de estado no instante k, $\mathbf{u}(k)$ e $\mathbf{y}(k)$ são o vetor força e o vetor de medição nas saídas para o tempo discreto k, respectivamente. A é a matriz do sistema na equação para o estado discreto $\mathbf{x}(k)$, e B é a matriz discreta de entradas. A matriz de saída C e a matriz de transmissão direta D não são modificadas na conversão do tempo contínuo para o tempo discreto.

No caso do sistema discreto resultar da discretização de um sistema contínuo, a quádrupla de matrizes $(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})$ no tempo discreto pode ser obtida da quádrupla $(\mathbf{A}_c, \mathbf{B}_c, \mathbf{C}, \mathbf{D})$ no tempo contínuo [22], usando as

seguintes equações

$$\mathbf{A} = e^{\mathbf{A}_{c}\Delta t}$$

$$\mathbf{B} = \int_{0}^{\Delta t} e^{\mathbf{A}_{c}\tau'} d\tau' \mathbf{B}_{c}; \quad \tau' = (k+1)\Delta t - \tau$$
(2-18)
se \mathbf{A}_{c} é assintóticamente estável:
 $\mathbf{B} = (\mathbf{A} - \mathbf{I})\mathbf{A}_{c}^{-1}\mathbf{B}_{c}.$

As dimensões das matrizes no sistema discreto são as mesmas que as do sistema contínuo.

2.4.1 Função de transferência

Seja $\mathbf{X}(z),$ a transformada-
z do vetor de estado no tempo discreto, $\{\pmb{x}(k)\}_{k=0}^{\infty},$ definido como

$$\mathbf{X}(z) \triangleq \mathscr{Z}[\mathbf{x}(k)] \triangleq \sum_{k=0}^{\infty} \mathbf{x}(k) z^{-k}$$

então, similar que no tempo contínuo, podem-se obter a relação entradasaída no domínio da freqüência e a matriz função de transferência $\mathbf{G}(z)$ no tempo discreto, sendo

$$\mathbf{Y}(z) = \left[\mathbf{C}(z\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}\right]\mathbf{U}(z)$$
(2-19)

$$\mathbf{G}(z) = \mathbf{C}(z\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}.$$
 (2-20)

2.5 Parâmetros de Markov e sua relação com a dinâmica do sistema

A solução das equações de estado de um sistema linear invariante no tempo, dadas por (2-8, 2-10), para condições iniciais $\mathbf{x}(t_0) = \mathbf{x}_0$ diferentes de zero, é

$$\mathbf{x}(t) = e^{\mathbf{A}_c(t-t_0)} \mathbf{x}_0 + \int_{t_0}^t e^{\mathbf{A}_c(t-\tau)} \mathbf{B}_c \mathbf{u}(\tau) d\tau$$
(2-21)

e a equação de medição (2-10), pode ser escrita como

$$\boldsymbol{y}(t) = \mathbf{C}e^{\mathbf{A}_{c}(t-t_{0})}\boldsymbol{x}_{0} + \mathbf{C}e^{\mathbf{A}_{c}(t-t_{0})}\int_{t_{0}}^{t}e^{\mathbf{A}_{c}\tau}\mathbf{B}_{c}\boldsymbol{u}(\tau)d\tau + \mathbf{D}\boldsymbol{u}(t), \qquad (2-22)$$

supondo $t_0 = 0$, e $\mathbf{x}_0 = \mathbf{0}$, temos que

$$\boldsymbol{y}(t) = \int_0^t \left[\mathbf{C} e^{\mathbf{A}_c(t-\tau)} \mathbf{B}_c + \mathbf{D} \delta(t-\tau) \right] \boldsymbol{u}(\tau) d\tau, \qquad (2-23)$$

sendo $\delta(t)$ a função delta de Dirac. Comparando a eq.(2-23) (com delta de Dirac aplicado no $\tau = 0$) com a eq.(2-4) achamos a relação entre a função de resposta ao impulso (FRI), $\mathbf{g}(t)$ e a equação dinâmica do sistema em espaço de estados dada por

$$\mathbf{g}(t) = \mathbf{C}e^{\mathbf{A}_{c}t}\mathbf{B}_{c} + \mathbf{D}\delta(t)$$
(2-24)

A FRI caracteriza a dinâmica de um sistema no domínio do tempo e é independente das forças de excitação e das respostas para um sistema mecânico ou estrutural elástico, linear invariante no tempo.

Sendo que,

$$e^{\mathbf{A}_{c}t} = \sum_{k=1}^{\infty} \frac{1}{(k-1)!} t^{k-1} \mathbf{A}_{c}^{k-1}$$

a FRI pode se expressar como expansão por séries de potência da seguinte maneira

$$\boldsymbol{g}(t) = \sum_{k=1}^{\infty} \frac{\boldsymbol{g}_k}{(k-1)!} t^{k-1} + \boldsymbol{g}_0 \,\delta(t)$$
(2-25)

sendo $\mathbf{g}_k \in \mathbb{R}^{m \times r}$, o k-ésimo coeficiente matricial da expansão por séries de potência da FRI, definido como

$$\boldsymbol{g}_{k} = \begin{cases} \mathbf{D}, & k = 0\\ \mathbf{C}\mathbf{A}_{c}^{k-1}\mathbf{B}_{c}, & k \ge 1. \end{cases}$$
(2-26)

A coleção dos coeficientes matriciais, $g = \{g_0, g_1, g_2, \ldots\}$, é conhecida como a seqüencia de parâmetros de Markov no tempo contínuo, os quais são matrizes com m linhas (igual ao número de sensores) e r colunas (igual ao número de atuadores). Os parâmetros de Markov dependem das características do sistema estrutural, ou seja, a massa, o amortecimento e a rigidez.

2.5.1 Parâmetros de Markov no tempo discreto

Num teste experimental para identificação, as excitações são séries de sinais discretas conhecidas como funções pulso, como resultado as respostas medidas que gera o sistema são amostras de funções resposta ao pulso (sampled pulse response).

Figura 2.2: Função pulso $\delta_{\Delta}(t-\tau)$.

Seja $\delta_{\Delta}(t-\tau)$, a função pulso definida na fig.(2.2). Considerando uma função pulso constante de magnitude unitária e duração Δt como força de excitação aplicada no tempo inicial $t_0 = 0$, o vetor de entrada $\boldsymbol{u}(t)$ conterá os elementos $u_i(t) = \Delta t \, \delta_{\Delta}(t-0) \, (i = 1, 2, ..., r)$. Substituindo $\boldsymbol{u}(t)$ na eq.(2-22) para cada intervalo de tempo contínuo Δt , obtém-se a seqüencia de funções resposta ao pulso seguinte

$$\begin{aligned} \mathbf{Y}_{\delta_{\Delta}}(0) &= \mathbf{D}, \\ \mathbf{Y}_{\delta_{\Delta}}(t) &= \mathbf{C} \int_{0}^{\Delta t} e^{\mathbf{A}_{c}(t-\tau)} \mathbf{B}_{c} d\tau & (\text{para } t \ge \Delta t) \\ &= \mathbf{C} e^{\mathbf{A}_{c}(t-\Delta t)} \int_{0}^{\Delta t} e^{\mathbf{A}_{c}\tau'} \mathbf{B}_{c} d\tau' & (\tau' = \Delta t - \tau) \\ &= \mathbf{C} e^{\mathbf{A}_{c}(t-\Delta t)} \mathbf{B} & (\text{usando eq.}(2\text{-}18)) \end{aligned}$$

se $\mathbf{Y}_{\delta_{\Delta}}(t)$ é medido, também com período de amostragem Δt ,

$$\begin{aligned} \mathbf{Y}_{k} &= \mathbf{Y}_{\delta_{\Delta}}(k\Delta t) &= \mathbf{C}e^{\mathbf{A}_{c}(k\Delta t - \Delta t)}\mathbf{B} \\ &= \mathbf{C}e^{\mathbf{A}_{c}\Delta t(k-1)}\mathbf{B} \\ &= \mathbf{C}\mathbf{A}^{k-1}\mathbf{B} \qquad (\text{usando eq.}(2\text{-}18)) \end{aligned}$$

esta seqüencia de amostras de funções resposta ao pulso são os chamados parâmetros de Markov no tempo discreto, em resumo

$$\mathbf{Y}_{k} = \begin{cases} \mathbf{D}, & k = 0\\ \mathbf{C}\mathbf{A}^{k-1}\mathbf{B}, & k \ge 1. \end{cases}$$
(2-27)

2.6 Parâmetros modais e sua relação com a FRI

Parâmetros modais (modos, freqüências naturais e fatores de amortecimento modais) são as características naturais de um sistema mecânico, ou estrutura, que descrevem suas propriedades dinâmicas. A teoria e matemática da análise modal é examinado por muitos autores [18, 33, 14, 6], e com o objetivo da identificação de parâmetros modais a partir de medições experimentais a relação entre a função resposta ao impulso e os parâmetros modais foi estabelecida [22, 44, 9, 5]. A FRI g(t) do sistema mecânico vibratório linear invariante no tempo cuja dinâmica é descrita pela equação de movimento (2-6) pode expressar-se em função dos parâmetros modais do sistema como

$$\boldsymbol{g}(t) = \Phi e^{\Lambda_c t} \Gamma^T \tag{2-28}$$

e a matriz FT é

$$\mathbf{G}(s) = \mathscr{L}[\mathbf{g}(t)] = \Phi \left[s\mathbf{I} - \Lambda_c\right]^{-1} \Gamma^T$$
(2-29)

sendo Φ a matriz modal definida como

$$\Phi = \left[\phi_1, \ldots, \phi_q, \phi_1^*, \ldots, \phi_q^*\right]_{q \times 2q}$$

no qual, ϕ_i , de dimensão $(q \times 1)$, é o *i*-ésimo vetor modal do sistema (* indica complexo conjugado). A matriz diagonal $(2q \times 2q)$,

$$\Lambda_c = diag\left(\lambda_1, \ldots, \, \lambda_q, \, \lambda_1^*, \ldots, \, \lambda_q^*
ight),$$

contêm os λ_i (a *i*-ésima raiz característica do sistema) os quais contêm a informação das freqüências naturais ω_i , e fatores de amortecimento modais ζ_i do sistema, sendo

$$\lambda_i = -\alpha_i + j\beta_i = -\zeta_i\omega_i + j\omega_i\sqrt{1-\zeta_i^2}$$

$$\lambda_i^* = -\alpha_i - j\beta_i = -\zeta_i\omega_i - j\omega_i\sqrt{1-\zeta_i^2}$$
(2-30)

A matriz

$$\Gamma = \left[\gamma_1, \ldots, \gamma_q, \gamma_1^*, \ldots, \gamma_q^*\right]_{q \times 2q}$$

contêm os vetores de participação modal do sistema, γ_i $(q \times 1)$, o qual é um parâmetro modal num sentido global da estrutura incluindo os sensores e atuadores, pois ele indica quanto uma específica entrada excita um específico modo.

A eq.(2-28) também pode-se escrever como

$$\boldsymbol{g}(t) = \sum_{i=1}^{q} \left(\phi_i \gamma_i^T e^{\lambda_i t} + \phi_i^* \gamma_i^{*T} e^{\lambda_i^* t} \right) = \sum_{i=1}^{q} \left(\mathbf{R}_i e^{\lambda_i t} + \mathbf{R}_i^* e^{\lambda_i^* t} \right)$$
(2-31)

sendo \mathbf{R}_i a *i*-ésima matriz de resíduos.

Na prática os sinais dinâmicos são discretos e as medições de todas as respostas e excitações é difícil e demorada. Como o número de modos do sistema real é ilimitado e só é possível representar um número finito deles, as equações acima descritas terão suas dimensões reduzidas. Se só mrespostas e r excitações estão disponíveis, e consideramos só \bar{q} modos, as equações equivalentes das equações (2-28, 2-31) no tempo discreto são

$$\begin{bmatrix} \boldsymbol{g}(k) \end{bmatrix}_{m \times r} = \begin{bmatrix} \boldsymbol{g}(k\Delta t) \end{bmatrix}_{m \times r} = \begin{bmatrix} \Phi \end{bmatrix}_{m \times 2\bar{q}} \begin{bmatrix} e^{\Lambda_c k\Delta t} \end{bmatrix}_{2\bar{q} \times 2\bar{q}} \begin{bmatrix} \Gamma^T \end{bmatrix}_{2\bar{q} \times r}$$

$$\Rightarrow \begin{bmatrix} \boldsymbol{g}(k) \end{bmatrix}_{m \times r} = \begin{bmatrix} \Phi \end{bmatrix}_{m \times 2\bar{q}} \begin{bmatrix} \Lambda^k \end{bmatrix}_{2\bar{q} \times 2\bar{q}} \begin{bmatrix} \Gamma^T \end{bmatrix}_{2\bar{q} \times r}$$
(2-32)

$$[\mathbf{g}(k)]_{m \times r} = \sum_{i=1}^{q} \left([\phi_i]_{m \times 1} [\gamma_i^T]_{1 \times r} e^{\lambda_i k \Delta t} + [\phi_i^*]_{m \times 1} [\gamma_i^{*T}]_{1 \times r} e^{\lambda_i^* k \Delta t} \right)$$

$$= \sum_{i=1}^{\bar{q}} \left([\mathbf{R}_i]_{m \times r} z_i^k + [\mathbf{R}_i^*]_{m \times r} z_i^{*k} \right)$$
(2-33)

sendo Δt o intervalo de amostragem, $z_i = e^{\lambda_i \Delta t}$, e

$$\Lambda = diag\left(z_1, \ldots, z_{\bar{q}}, z_1^*, \ldots, z_{\bar{q}}^*\right) = e^{\Lambda_c \Delta t}.$$

2.6.1 Modelo em espaço de estados nas coordenadas modais

Considerando o modelo em espaço de estados no tempo discreto, com rentradas e m saídas, descrito nas equações (2-16, 2-17); a matriz do sistema $\mathbf{A}_{n \times n}$ $(n = 2\bar{q})$ pode ser decomposta como

$$\mathbf{A} = \Psi \Lambda \Psi^{-1} \tag{2-34}$$

sendo Ψ a matriz de autovetores de **A**. Fazendo a transformação linear

$$\mathbf{x}(k) = \Psi \bar{\mathbf{x}}$$

e substituindo $\mathbf{x}(k)$ nas equações (2-16, 2-17) obtém-se o modelo discreto em espaço de estados nas coordenadas modais seguinte

$$\bar{\boldsymbol{x}}(k+1) = \Lambda \bar{\boldsymbol{x}}(k) + \mathbf{B}_m \boldsymbol{u}(k) \tag{2-35}$$

$$\boldsymbol{y}(k) = \mathbf{C}_m \bar{\boldsymbol{x}}(k) + \mathbf{D}\boldsymbol{u}(k) \tag{2-36}$$

sendo

$$\Lambda = \Psi^{-1} \mathbf{A} \Psi, \quad \mathbf{B}_m = \Psi^{-1} \mathbf{B} \quad e \quad \mathbf{C}_m = \mathbf{C} \Psi. \tag{2-37}$$

2.7 Realização de sistemas lineares invariantes no tempo

Seja uma matriz função de transferência $\mathbf{G}(s)$ prescrita, a equação dinâmica linear invariante no tempo que reproduz $\mathbf{G}(s)$ é chamada de uma realização de $\mathbf{G}(s)$. Para cada $\mathbf{G}(s)$ realizável, existe um número ilimitado de realizações. Por exemplo; seja $\mathbf{G}(s)$ uma matrix racional própria de dimensão $(m \times r)$, dado $\mathbf{G}(s) = \mathbf{\bar{G}}(s) + \mathbf{G}(\infty)$, sendo $\mathbf{\bar{G}}(s)$ estritamente própria definida como

$$\bar{\mathbf{G}}(s) = \frac{\mathbf{N}(s)}{\mathbf{d}(s)} = \frac{\mathbf{N}_1 s^{\alpha-1} + \mathbf{N}_2 s^{\alpha-2} + \dots + \mathbf{N}_\alpha}{s^\alpha + d_1 s^{\alpha-1} + d_2 s^{\alpha-2} + \dots + d_\alpha}$$
(2-38)

sendo o polinômio mônico $\mathbf{d}(s)$, o denominador comum mínimo de $\mathbf{G}(s)$, e sendo \mathbf{N}_i matrizes constantes $(m \times r)$; duas importantes realizações de $\mathbf{G}(s)$ em espaço de estados são a realização na forma canônica controlável e a realização na forma canônica observável.

2.7.1 Controlabilidade

Teorema 2.1 A equação dinâmica linear invariante no tempo de dimensão n, (\mathbf{A}_c , \mathbf{B}_c , \mathbf{C} , \mathbf{D}), definida nas equações (2-8, 2-10), é controlável se e só se qualquer das seguintes condições equivalentes é satisfeita:

- 1. Todas as filas de $e^{-\mathbf{A}_c t} \mathbf{B}_c$ (e conseqüentemente de $e^{\mathbf{A}_c t} \mathbf{B}_c$) são linearmente independentes em $[0, \infty) \in \mathbb{C}$, o campo dos números complexos.
- 2. Todas as filas de $(s\mathbf{I} \mathbf{A}_c)^{-1}\mathbf{B}_c$ são linearmente independentes sobre \mathbb{C} .
- 3. O gramiano de controlabilidade, $\mathbf{W}_{ct} \triangleq \int_0^t e^{\mathbf{A}_c \tau} \mathbf{B}_c \mathbf{B}_c^{\hbar} e^{\mathbf{A}_c^{\hbar} \tau} d\tau$, é não singular para qualquer t > 0. (\hbar indica o complexo conjugado transposto).
- 4. A matriz de controlabilidade, de dimensão $(n \times nr)$

$$\mathcal{Q}_n = \begin{bmatrix} \mathbf{B}_c & \mathbf{A}_c \mathbf{B}_c & \mathbf{A}_c^2 \mathbf{B}_c & \cdots & \mathbf{A}_c^{n-1} \mathbf{B}_c \end{bmatrix}$$
(2-39)

tem posto n.

5. Teste de Popov-Belevitch-Hautus: Para cada autovalor λ de \mathbf{A}_c (e conseqüentemente para cada $\lambda \in \mathbb{C}$), a matriz complexa de dimensão $n \times (n+r)$, [$(\lambda \mathbf{I} - \mathbf{A}_c) \mathbf{B}_c$] tem posto n, ou equivalentemente, $(s\mathbf{I} - \mathbf{A}_c) \mathbf{e} \mathbf{B}_c$ são coprima à esquerda.

Dados $\mathbf{I}_r \in \mathbf{0}_r$, a matriz identidade e a matriz zero de dimensões $(r \times r)$ respectivamente, a realização de $\mathbf{G}(s)$ na forma canônica controlável é

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} \mathbf{0}_r & \mathbf{I}_r & \mathbf{0}_r & \cdots & \mathbf{0}_r \\ \mathbf{0}_r & \mathbf{0}_r & \mathbf{I}_r & \cdots & \mathbf{0}_r \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{0}_r & \mathbf{0}_r & \mathbf{0}_r & \cdots & \mathbf{I}_r \\ -d_{\alpha}\mathbf{I}_r & -d_{\alpha-1}\mathbf{I}_r & -d_{\alpha-2}\mathbf{I}_r & \cdots & -d_1\mathbf{I}_r \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \mathbf{0}_r \\ \mathbf{0}_r \\ \vdots \\ \mathbf{0}_r \\ \mathbf{I}_r \end{bmatrix} \mathbf{u}(t)$$
(2-40)
$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{N}_{\alpha} & \mathbf{N}_{\alpha-1} & \mathbf{N}_{\alpha-2} & \cdots & \mathbf{N}_1 \end{bmatrix} \mathbf{x}(t) + \mathbf{G}(\infty) \mathbf{u}(t)$$

Usando o teorema (2.1) é fácil comprovar que a eq.(2-40) é sempre controlável, mas em geral é não observável. Se $\mathbf{N}(s) \in \mathbf{d}(s)$ são coprima, a realização no (2-40) é também observável.

2.7.2 Observabilidade

Teorema 2.2 A equação dinâmica linear invariante no tempo de dimensão n, (\mathbf{A}_c , \mathbf{B}_c , \mathbf{C} , \mathbf{D}), definida nas equações (2-8, 2-10), é observável se e só se qualquer das seguintes condições equivalentes é satisfeita:

- 1. Todas as colunas de $\mathbb{C}e^{\mathbf{A}_{ct}}$ são linearmente independentes em $[0, \infty) \in \mathbb{C}$, o campo dos números complexos.
- 2. Todas as colunas de $\mathbf{C}(s\mathbf{I}-\mathbf{A}_c)^{-1}$ são linearmente independentes sobre \mathbb{C} .
- 3. O gramiano de observabilidade, $\mathbf{W}_{ot} \triangleq \int_{0}^{t} e^{\mathbf{A}_{c}^{\hbar} \tau} \mathbf{C}^{\hbar} \mathbf{C} e^{\mathbf{A}_{c} \tau} d\tau$, é não singular para qualquer t > 0. (\hbar indica o complexo conjugado transposto).

4. A matriz de observabilidade, de dimensão $(nm \times n)$

$$\mathcal{P}_{n} = \begin{bmatrix} \mathbf{C} \\ \mathbf{C}\mathbf{A}_{c} \\ \mathbf{C}\mathbf{A}_{c}^{2} \\ \vdots \\ \mathbf{C}\mathbf{A}_{c}^{n-1} \end{bmatrix}$$
(2-41)

 $tem \ posto \ n.$

5. Teste de Popov-Belevitch-Hautus: Para cada autovalor λ de \mathbf{A}_c (e conseqüentemente para cada $\lambda \in \mathbb{C}$), a matriz complexa de dimensão $(n+m) \times n$,

$$\left[\begin{array}{c} \lambda \mathbf{I} - \mathbf{A}_c \\ \mathbf{C} \end{array}\right]$$

tem posto n, ou equivalentemente, $(s\mathbf{I}-\mathbf{A}_c) \in \mathbf{C}$ são coprima à direita.

Dados \mathbf{I}_m e $\mathbf{0}_m$, a matriz identidade e a matriz zero de dimensões $(m \times m)$ respectivamente, a realização de $\mathbf{G}(s)$ na forma canônica observável é

$$\dot{\mathbf{x}}(t) = \begin{bmatrix} \mathbf{0}_{m} & \mathbf{0}_{m} & \cdots & \mathbf{0}_{m} & -d_{\alpha}\mathbf{I}_{m} \\ \mathbf{I}_{m} & \mathbf{0}_{m} & \cdots & \mathbf{0}_{m} & -d_{\alpha-1}\mathbf{I}_{m} \\ \mathbf{0}_{m} & \mathbf{I}_{m} & \cdots & \mathbf{0}_{m} & -d_{\alpha-2}\mathbf{I}_{m} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{0}_{m} & \mathbf{0}_{m} & \cdots & \mathbf{I}_{m} & -d_{1}\mathbf{I}_{m} \end{bmatrix} \mathbf{x}(t) + \begin{bmatrix} \mathbf{N}_{\alpha} \\ \mathbf{N}_{\alpha-1} \\ \mathbf{N}_{\alpha-2} \\ \vdots \\ \mathbf{N}_{1} \end{bmatrix} \mathbf{u}(t)$$

$$(2-42)$$

$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{0}_{m} & \mathbf{0}_{m} & \cdots & \mathbf{0}_{m} & \mathbf{I}_{m} \end{bmatrix} \mathbf{x}(t) + \mathbf{G}(\infty) \mathbf{u}(t)$$

Usando o teorema (2.2) é fácil comprovar que a eq.(2-42) é sempre observável, mas em geral é não controlável. Se $\mathbf{N}(s) \in \mathbf{d}(s)$ são coprima, a realização no (2-42) é também controlável.

2.7.3 Realização mínima

Realização mínima, ou realização irredutível, significa uma equação dinâmica linear invariante no tempo (por exemplo o modelo em espaço de estados) com a menor dimensão possível, dentre todas as realizações que tenham as mesmas relações entrada-saída. Todas as realizações mínimas têm o mesmo conjunto de autovalores, que contêm a informação dos parâmetros modais do sistema.

Usando transformações lineares, o sistema em espaço de estados, pode ser transformado na seguinte forma canônica

$$\begin{bmatrix} \dot{\bar{\mathbf{x}}}(t)_{co} \\ \dot{\bar{\mathbf{x}}}(t)_{c\bar{o}} \\ \dot{\bar{\mathbf{x}}}(t)_{c\bar{o}} \\ \dot{\bar{\mathbf{x}}}(t)_{\bar{c}\bar{o}} \\ \dot{\bar{\mathbf{x}}}(t)_{\bar{c}\bar{o}} \end{bmatrix} = \begin{bmatrix} \mathbf{\bar{A}}_{co} & \mathbf{0} & \mathbf{\bar{A}}_{13} & \mathbf{0} \\ \mathbf{\bar{A}}_{21} & \mathbf{\bar{A}}_{c\bar{o}} & \mathbf{\bar{A}}_{23} & \mathbf{\bar{A}}_{24} \\ \mathbf{0} & \mathbf{0} & \mathbf{\bar{A}}_{\bar{c}\bar{o}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{\bar{A}}_{43} & \mathbf{\bar{A}}_{\bar{c}\bar{o}} \end{bmatrix} \begin{bmatrix} \mathbf{\bar{x}}(t)_{c\bar{o}} \\ \mathbf{\bar{x}}(t)_{\bar{c}\bar{o}} \\ \mathbf{\bar{x}}(t)_{\bar{c}\bar{o}} \end{bmatrix} + \begin{bmatrix} \mathbf{\bar{B}}_{c\bar{o}} \\ \mathbf{\bar{B}}_{c\bar{o}} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix} \mathbf{u}(t)$$

$$\mathbf{y}(t) = \begin{bmatrix} \mathbf{\bar{C}}_{co} & \mathbf{0} & \mathbf{\bar{C}}_{\bar{c}\bar{o}} & \mathbf{0} \end{bmatrix} \mathbf{\bar{x}}(t) + \mathbf{D}\mathbf{u}(t)$$

$$(2-43)$$

nas equações, o sub-índice *co* representa a parte controlável e observável, $c\bar{o}$ representa a parte controlável mas não-observável, $\bar{c}o$ a parte nãocontrolável mas observável, e $\bar{c}\bar{o}$ a parte não-controlável e não-observável. Essa equação pode ser resumida no esquema da Figura (2.3).

Figura 2.3: Decomposição canônica de uma equação dinâmica linear.

Observa-se que a função de transferência só dependerá da parte co (controlável e observável), então

$$\mathbf{G}(s) = \bar{\mathbf{C}}_{co} \left[s\mathbf{I} - \bar{\mathbf{A}}_{co} \right]^{-1} \bar{\mathbf{B}}_{co}.$$
 (2-44)

Assim, uma realização de $\mathbf{G}(s)$ com a menor dimensão possível é uma equação dinâmica controlável e observável [12, 24].

2.8

Características do sistema identificado em espaço de estados

Em geral, as matrizes da quádrupla identificada $(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}}, \hat{\mathbf{D}})$ no tempo discreto, não são as mesmas que do modelo físico em espaço de

estados (**A**, **B**, **C**, **D**); elas relacionam-se mediante uma transformação de similaridade **T**. De fato, as variáveis de estado podem ser transformadas num novo conjunto de variáveis de estado usando a transformação de coordenadas

$$\mathbf{x}(k) = \mathbf{T}\bar{\mathbf{x}}(k) \tag{2-45}$$

sendo $\mathbf{T} \in \mathbb{R}^{n \times n}$ qualquer matriz não singular. Substituindo a eq.(2-45) nas equações (2-16) e (2-17), obtém-se a realização similar em espaço de estados

$$\bar{\boldsymbol{x}}(k+1) = \hat{\boldsymbol{A}}\bar{\boldsymbol{x}}(k) + \hat{\boldsymbol{B}}\boldsymbol{u}(k)$$
(2-46)

$$\mathbf{y}(k) = \hat{\mathbf{C}}\bar{\mathbf{x}}(k) + \mathbf{D}\mathbf{u}(k)$$
(2-47)

sendo que

 $(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}}, \hat{\mathbf{D}}) = (\mathbf{T}\mathbf{A}\mathbf{T}^{-1}, \mathbf{T}\mathbf{B}, \mathbf{C}\mathbf{T}^{-1}, \mathbf{D}).$ (2-48)

A quádrupla de matrizes identificadas $(\hat{\mathbf{A}}_c, \hat{\mathbf{B}}_c, \hat{\mathbf{C}}, \hat{\mathbf{D}})$ no tempo contínuo pode ser estimada a partir da quádrupla de matrizes identificadas $(\hat{\mathbf{A}}, \hat{\mathbf{B}}, \hat{\mathbf{C}}, \hat{\mathbf{D}})$ no tempo discreto usando a computação inversa das equações (2-18), ou seja

$$\hat{\mathbf{A}}_{c} < \frac{\ln(\mathbf{A})}{\Delta t}$$

$$\hat{\mathbf{B}}_{c} = \hat{\mathbf{A}}_{c}(\hat{\mathbf{A}} - \mathbf{I})^{-1}\hat{\mathbf{B}}$$
(2-49)

Se o sistema em espaço de estados é identificado ao partir de dados medidos usando um método suficientemente exato e efetivo, a quádrupla identificada é equivalente ao modelo físico do ponto de vista de ter os mesmos parâmetros de Markov.